NEUTRON CAPTURE CROSS SECTIONS FOR THE RE/OS CLOCK

Marita Mosconi¹, Alberto Mengoni², The n_TOF Collaboration³

The radioactive decay of $^{187}\mathrm{Re} \to ^{187}\mathrm{Os}$ (t_{1/2} = 43 Gyr) is suited for dating the onset of heavy element nucleosynthesis. The radio-genic contribution to the $^{187}\mathrm{Os}$ abundance is the difference between the natural abundance and the corresponding s-process component. This component can be obtained via the well established $<\sigma>_N$ systematics using the neighboring s-only isotope $^{186}\mathrm{Os}$, provided the neutron capture cross sections of both isotopes are known with sufficient accuracy.

We report on a new set of experiments performed with a C6D6 detector array at the n_TOF neutron spallation facility of CERN. The capture cross sections of 186 Os, 187 Os, and 188 Os have been measured in the neutron energy range between 1 eV and 1 MeV, and Maxwellian averaged cross sections were deduced for the relevant thermal energies from kT = 5 keV to 100 keV.

Email: marita.mosconi@ik.fzk.de

¹ Forschungszentrum Karlsruhe, Germany

² CERN, Switzerland

³ The $n_{-}TOF$ Collaboration